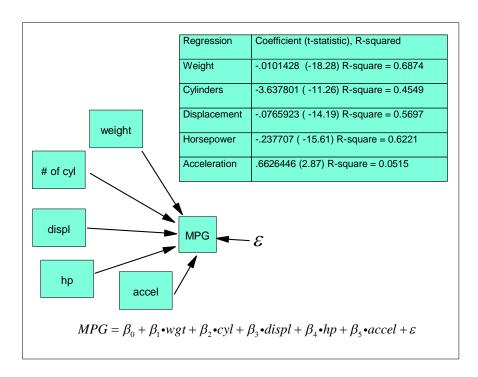
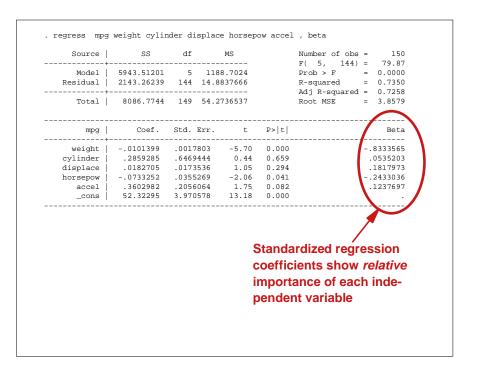
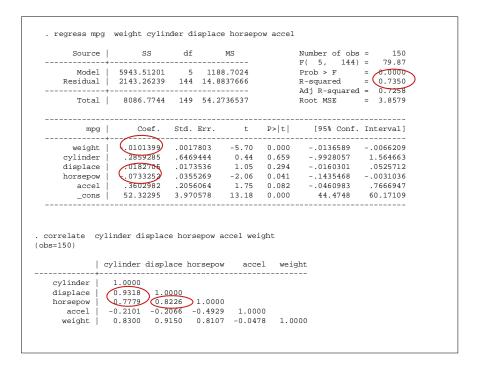
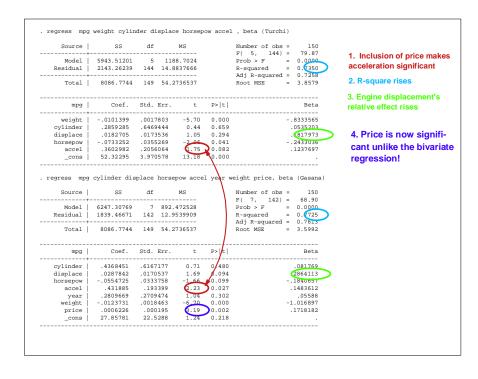


- ✓ Number of cylinders
- ✓ Engine displacement
- ✓ Horsepower
- ✓ Acceleration
- ✓ Price (?)

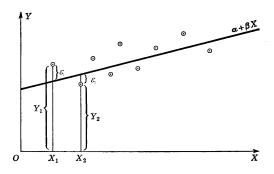


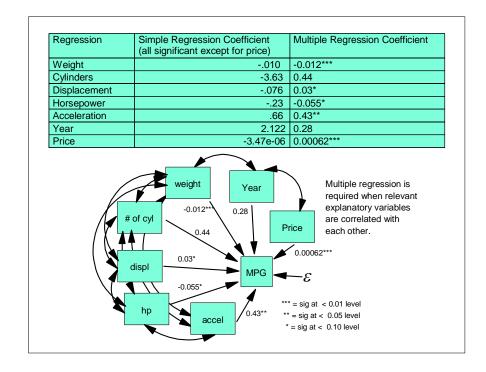

. regress mpg cylinder

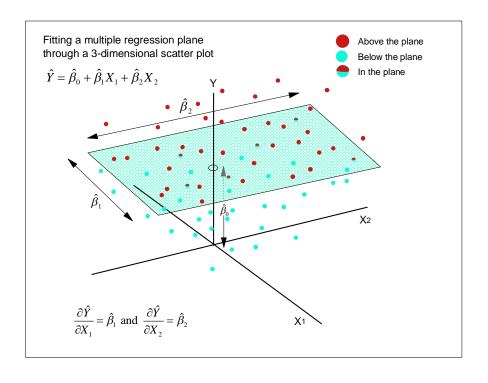

	SS	df	MS			
+				F(1, 152)	=	126.87
	3788.24488	1	3788.24488	Prob > F	=	0.0000
	4538.50863	152	29.8586094	R-squared	=	0.4549
+				Adj R-squared	=	0.4514
	8326.75351	153	54.4232255	Root MSE	=	5.4643
	;	3788.24488 4538.50863	3788.24488 1 4538.50863 152	3788.24488	F(1, 152) 3788.24488	F(1, 152) = 3788.24488

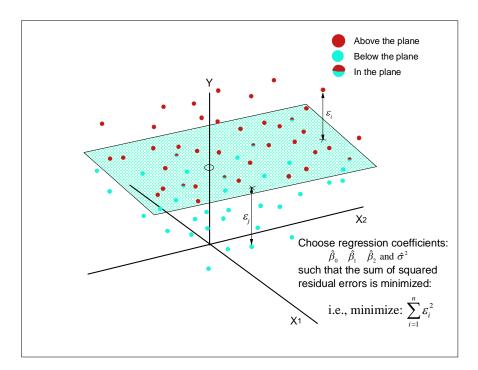

mpg	Coef.	Std. Err.	t	P> t	[95% Conf.	Interval]
	-3.637801 46.41558				-4.275879 43.20454	

DOULCC	SS				Number of obs : F(1, 152) :	
esidual	429.143083 7897.61042	1 152	429.143083 51.9579633		Prob > F R-squared Adj R-squared	= 0.0046
	8326.75351				Root MSE	
mpg	Coef.	Std. E	Err. t	P> t	[95% Conf.	Interval]
accel	6626446 18.00445				.2071058	
					10.49919	25.5097
egress mp	g price					
gress mp	g price SS +	df 1	MS 		Number of obs F(1, 152) Prob > F	= 154 = 0.00 = 0.9907
Source Model Residual	g price	df 1 152	MS .007485901 54.7812238		Number of obs	= 154 = 0.00 = 0.9907 = 0.0000 = -0.0066
gress mp Source Model Residual	g price SS 	df 1 152 153	MS .007485901 54.7812238 54.4232255		Number of obs F(1, 152) Prob > F R-squared Adj R-squared Root MSE	= 154 = 0.00 = 0.9907 = 0.0000 = -0.0066 = 7.4014
egress mp Source Model Residual	g price SS .007485901 8326.74602 8326.75351	df 1 152 153	MS .007485901 54.7812238 54.4232255	P> t	Number of obs F(1, 152) Prob > F R-squared Adj R-squared Root MSE	= 154 = 0.00 = 0.9907 = 0.0000 = -0.0066 = 7.4014

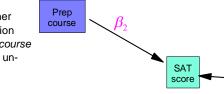

Handout: Multiple Regression Analysis of Mileage Data

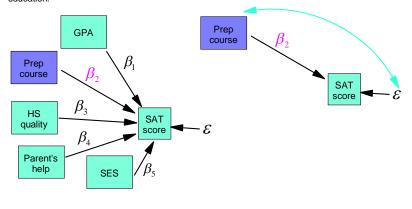

. regress $\,$ mpg cylinder displace horsepow accel year weight price, beta (Gasana)


Source	SS	df	MS	Number of obs =	150
	+			F(7, 142) =	68.90
Model	6247.30769	7	892.472528	Prob > F =	0.0000
Residual	1839.46671	142	12.9539909	R-squared =	0.7725
	+			Adj R-squared =	0.7613
Total	8086.7744	149	54.2736537	Root MSE =	3.5992


mpg	Coef.	Std. Err.	t	P> t	Beta
cylinder	.4368451	.6167177	0.71	0.480	.081769
displace	.0287842	.0170537	1.69	0.094	.2864113
horsepow	0554725	.0333758	-1.66	0.099	1840657
accel	.431885	.193399	2.23	0.027	.1483612
year	.2809669	.2709474	1.04	0.302	.05588
weight	0123731	.0018463	-6.70	0.000	-1.016897
price	.0006226	.000195	3.19	0.002	.1718182
_cons	27.85781	22.5288	1.24	0.218	

General Rule: Use multiple regression when a number of variables have an effect on a dependent variable *and* those variables are correlated with each other, such that leaving one of them out of the regression leads to the included variables' coefficients reflecting some of the excluded variable's influences.

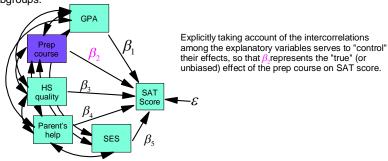



- ✓ Find a [very] large number of students and assign them into homogeneous groups; that is, into groups where every student is the same as every other student with respect to GPA, high school quality, parental help, SES.
- ✓ Then, in each group randomly assign one half the students to take the prep course and leave the other group without the prep course as a control group.
- ✓ Test the students before and after the course to measure gains (remember the control group will, on average, see a gain in scores even without the prep course).
- \checkmark Do a simple regression to determine the value of $~eta_2$

By controlling the values of all other variables, we remove the correlation between the error term and *prep course* and the beta coefficient becomes unbiased:

$$E\left[\hat{\beta}_{2}\right] = \beta_{2}$$

- ✓ Ability as measured, say, by high school GPA
- ✓ Test-taking skill as augmented by having taken an SAT prep. course.
- ✓ Quality of high school education as measured by some sort of a school effectiveness score.
- ✓ Parental assistance in preparing for test.
- ✓ Socioeconomic level (SES) of student as measured, say, by parents' income and education.



Problems with social experiments:

- ✓ Failure to randomize. It's often difficult, or even impossible, to randomly assign observations into two groups. Difficult because our data are not often experimental, but are essentially made available to us without any possibility of arranging them into any sort of experimental design.
- ✓ Failure to follow the "treatment" protocol. Even if we can randomly assign students to
 the prep course -- or not -- we cannot make the students study or otherwise follow the
 training protocol. Also, we cannot stop control group subjects from taking the course
 on the sly.
- ✓ Attrition. Subjects drop out of experiments, and their tendency to drop out is not random. That is, non-random attrition may lead to correlation between errors and treatment variable (known as selection bias).
- ✓ Cost and small samples. Because experiments with humans are very expensive, the samples tend to be small, reducing the precision of our statistical estimation.

Advantages of Multiple Regression:

- ✓ By explicitly including the other, relevant and correlated, explanatory variables, it enables us to control for them without requiring them to be exactly the same for any two people. That is, by explicitly taking account of the intercorrelations among the potential explanatory variables, multiple regression allow us to control for their influence without requiring them to take on only a restricted set of values.
- ✓ It allows for the simultaneous control of many variables even though no two people are exactly alike on all the variables.
- ✓ It allows us to generate a single estimate for the "effect" of each explanatory variable, which is analogous to the weighted average of effects in different subgroups.

Definition: A statistical analysis is **internally valid** if the statistical inferences about causal effects are valid for the population being studied. The analysis is **externally valid** if its inferences and conclusions can be generalized from the population and setting studied to other populations and settings.

Internal validity has two components:

The estimator of the causal effect should be unbiased and consistent. That is, a slope coefficient $\hat{\beta}_i$ should be an unbiased and consistent estimator of the true population effect, β . That is, $_E \lceil \hat{\beta}_i \rceil = \beta$.

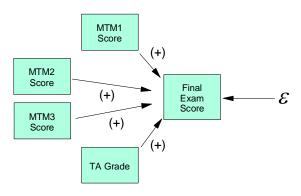
Hypothesis tests should have the desired significance level (the actual rejection rate of the test under the null hypothesis should equal its desired significance level).

So, for OLS regression internal validity requires that the OLS estimator is unbiased and consistent and that standard errors are computed in a way that makes confidence intervals have the desired confidence level.

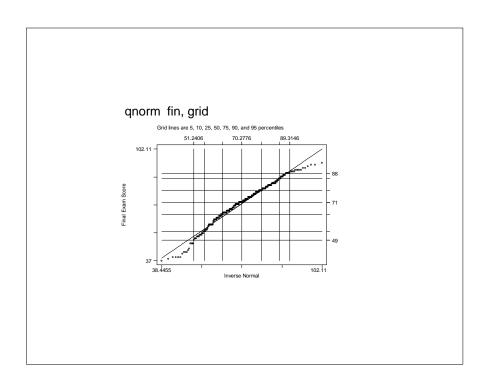
Potential Problems in using Multiple Regression to "Control" other variables:

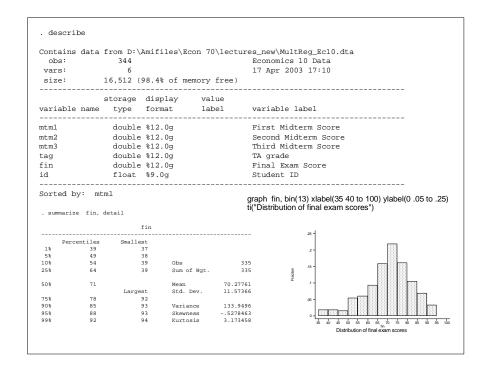
- ✓ We have to assume an explicit functional relationship among the variables -- it could be wrong.
- ✓ Unlike a randomized experiment, we have to be able to measure the explanatory variable to be able to include it in the statistical analysis. In addition, the variable must be measured well to avoid "measurement error."
- ✓ We have to include all the relevant and correlated explanatory variables in order to avoid omitted variable bias. Randomization controls for all characteristics of the experimental subjects, regardless of whether those characteristics can be measured.

$$Y = \beta_0 + \beta_1 X_1 + \beta_2 X_2 + \dots + \beta_k X_k + \varepsilon$$

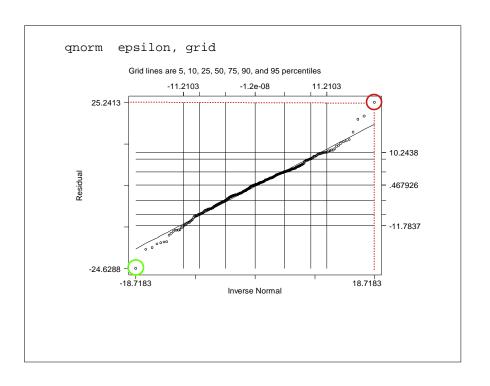

 \mathcal{E} is a random error, that, for any given set of values of indepent variables $X_1, X_2, X_3 \dots$ is normally distributed with mean zero and variance equal to σ_c^2 .

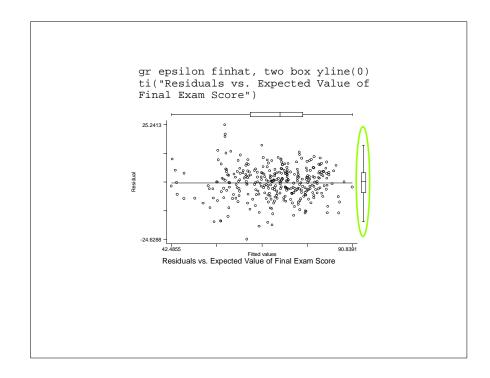
The random errors, \mathcal{E}_j and \mathcal{E}_k associated with any pair of *y*-values are independent of each other and independent of the values of *x*-variables included in the model.

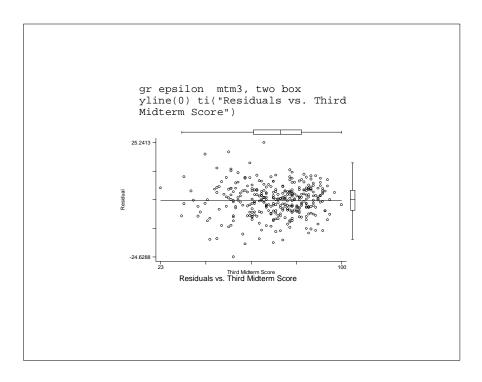

Then, it follows that:
$$E[Y] = \beta_0 + \beta_1 X_1 + \beta_2 X_2 + \cdots + \beta_k X_k$$

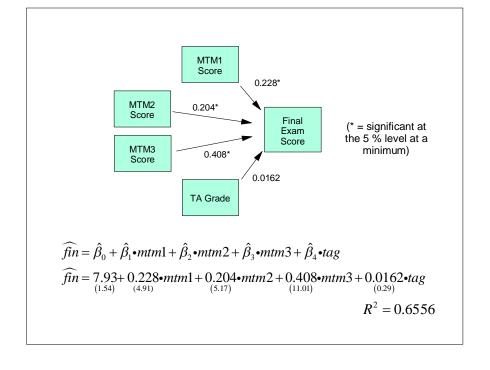

The model is "well specified", i.e., all relevant (and correlated) explantory variables are included in the model.

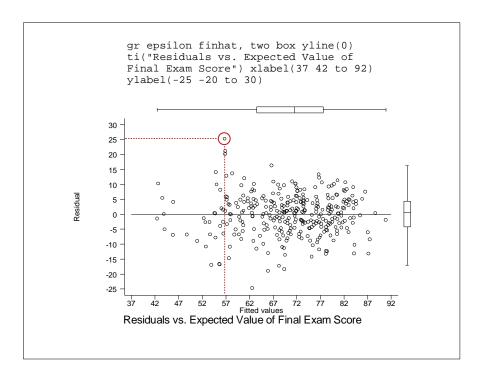
The Problem: Does performance on midterm exams predict performance on the final exam very well? Do different midterms have a different impact on final exam performance?

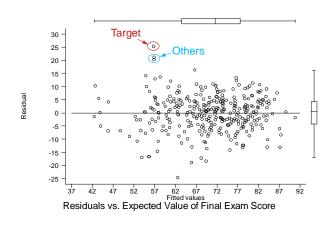


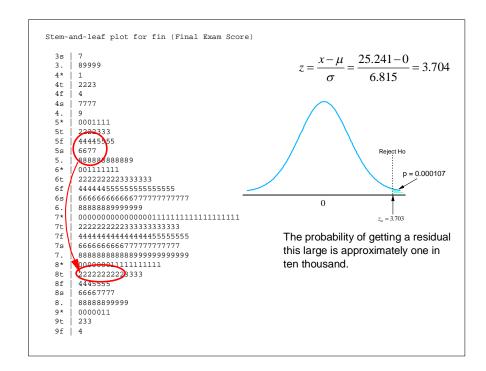

$$fin = \beta_0 + \beta_1 \cdot mtm1 + \beta_2 \cdot mtm2 + \beta_3 \cdot mtm3 + \beta_4 \cdot tag + \varepsilon$$






Source	SS S	df	MS			Number of obs F(4, 326)		
Model	29172.9861	4	7293.246	552		Prob > F		
Residual	15328.4037	326	47.01964	131		R-squared		
Total	+ 44501.3897	330	134.8526	96		Adj R-squared Root MSE		
fin	Coef.	Std.	 Err.	t	P> t	[95% Conf.	Interv	al]
mtm1	.227831	.0463	552 4	.91	0.000	.1366379	.3190	241
mtm2						.1266404		
mtm3	4081122				0.000	.335204		
-tag	.016204	.056				0950135		
_cons	7.930885	5.164	574 1	54	0.126	-2.229214	18.09	098





Possibilities:

- ✓ He made a miraculous improvement on the final
- ✓ He cheated by bringing crib sheets into the final exam
- ✓ He cheated by having someone take the test for him
- ✓ He cheated by copying another student's answers

Types of variables used in regression analysis:

1. A **metric (or quantitative) variable** is a variable that is measured on some well-defined scale. For variables measured on a particular scale, a change of a certain amount means the same thing no matter where one starts. (e.g., growing one inch in height means the same thing whether or not one starts at 5'2" or 6'2")

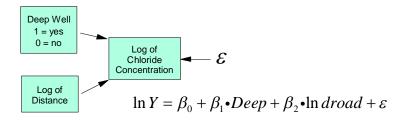
1 = strongly disagree

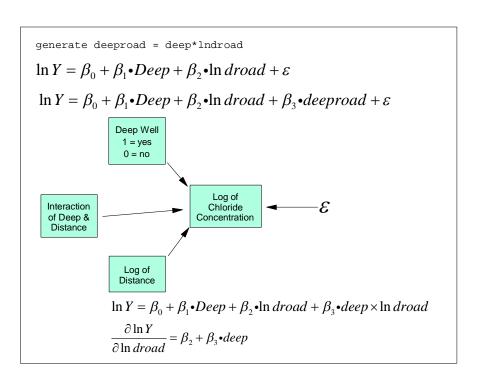
2 = disagree

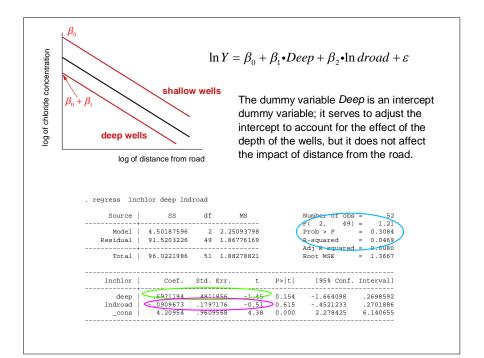
3 = agree

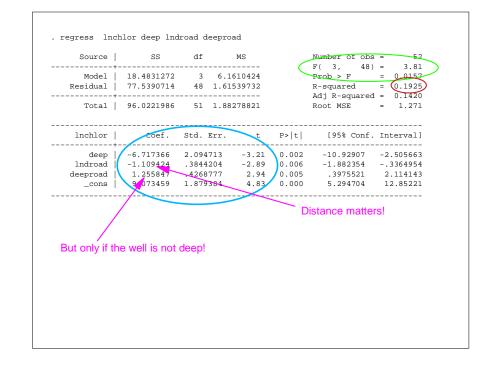
4 = strongly agree

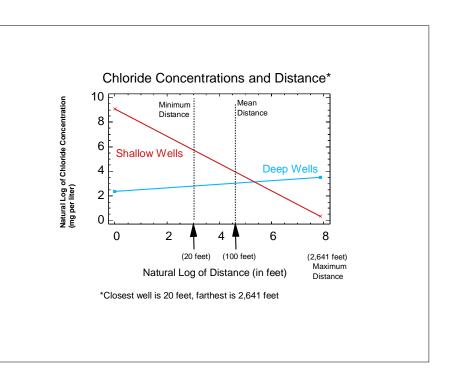
2. This variable is an **ordinal variable.** Its values ascend or descend, but the distance between them is arbitrary and undefined. That is, 1<2<3<4, but we don't know by how

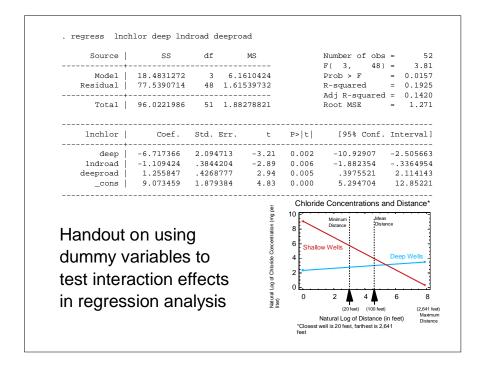

much.

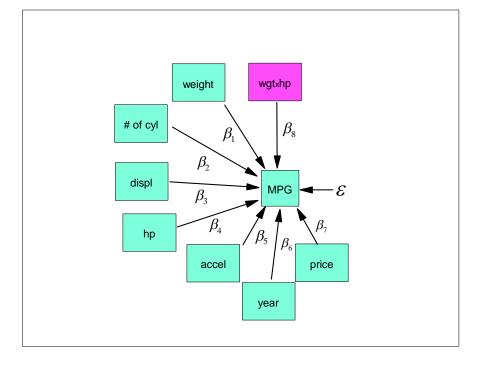

3. **Categorical variables** are variables that do not have any order at all; that is, they are measured on **nominal scales** where each value represents a different category, but the categories themselves cannot be ranked. e.g., 1 = Male and 0 = Female for the variable "sex."


A **dummy variable** is a categorical variable that can take on only one of two values, zero or one.


Study of Road Salt Contamination of New England Wells Variables


- 1. *Inclor:* natural logarithm of the chloride concentration (log milligrams per liter) in the well's water -- an indicator of contamination by road salt.
- deep: dummy variable coded 0 for shallow wells and 1 for deeper wells drilled into bedrock.
- Indroad: natural logarithm of the distance (log feet) between the well and the nearest salted road.





Model 6247.30769 7 892.472528 Prob > F = 0.0000	Model 6247.30769 7 892.472528 Prob > F	Source	SS	df	MS		Number of obs F(7, 142)		
Mg R-squared = 0.7613 Root MSE = 3.5992 Root MSE Root MSE = 3.5992 Root MSE Root MSE	Adj R-squared = 0.7613 Root MSE = 3.5992 mpg Coef. Std. Err. t P> t [95% Conf. Interval] weight 0123731	Model	6247.30769	7	892.472528				
Total 8086.7744 149 54.2736537 Root MSE = 3.5992 mpg Coef. Std. Err. t P> t [95% Conf. Interval]	Total 8086.7744 149 54.2736537 Root MSE = 3.5992 mpg Coef. Std. Err. t P> t [95% Conf. Interval]	Residual	1839.46671	142	12.9539909		R-squared	= 0.772	5
mpg Coef. Std. Err. t P> t [95% Conf. Interval] weight 0123731	mpg Coef. Std. Err. t P> t [95% Conf. Interval] weight 0123731	+					Adj R-squared	= 0.761	3
weight 0123731	weight 0123731 .0018463 -6.70 0.000 0160229 0087234 cylinder .4368451 .6167177 0.71 0.480 7822891 1.655979 displace .0287842 .0170537 1.69 0.094 0049278 .0624962 dorsepow 0554725 .0333758 -1.66 0.099 1214501 .0105051 accel .431885 .193399 2.23 0.027 .0495716 .8141984 year .2809669 .2709474 1.04 0.302 2546449 .8165786 price .0006226 .000195 3.19 0.002 .0002371 .0010081 _cons 27.85781 22.5288 1.24 0.218 -16.67736 72.39298	Total	8086.7744	149	54.2736537		Root MSE	= 3.599	2
Valinder .4368451 .6167177	cylinder .4368451	mpg	Coef.	Std. E	Err. t	P> t	[95% Conf.	Interval	-]
Valinder .4368451 .6167177	cylinder .4368451	weight	0123731	.00184	 463 -6.70	0.000	0160229	008723	– 4
Splace .0287842 .0170537	Displace .0287842	cylinder							
accel .431885	accel .431885	displace	.0287842			0.094	0049278	.062496	2
accel .431885	accel .431885	norsepow	0554725	.03337	758 -1.66	0.099	1214501	.010505	1
price .0006226 .000195 3.19 0.002 .0002371 .0010081 _cons 27.85781 22.5288 1.24 0.218 -16.67736 72.39298	price .0006226 .000195 3.19 0.002 .0002371 .0010081cons 27.85781 22.5288 1.24 0.218 -16.67736 72.39298	accel	.431885	.1933	399 2.23	0.027	.0495716	.814198	4
price .0006226 .000195 3.19 0.002 .0002371 .0010081 _cons 27.85781 22.5288 1.24 0.218 -16.67736 72.39298	price .0006226 .000195 3.19 0.002 .0002371 .0010081cons 27.85781 22.5288 1.24 0.218 -16.67736 72.39298	year	.2809669	. 27094	174 1.04	0.302	2546449	.816578	6
_ 	enerate wthp= weight* horsepow	price	.0006226	.0001	L95 3.19	0.002	.0002371	.001008	1
enerate wthp= weight* horsepow		_cons	27.85781	22.52	288 1.24	0.218	-16.67736	72.3929	8
	$G = \beta_0 + \beta_1 \circ wgt + \beta_2 \circ cyl + \beta_3 \circ displ + \beta_4 \circ lp + \beta_5 \circ accel + \beta_6 \circ year + \beta_7 \circ price + \beta_8 \circ wgt \times l$		•		·	0 1.	0 0	. (0	

. regress mp	og weight cyli	nder displa	ce horser	ow acce	l year price	wthp
Source					Number of obs	
Model Residual	6394.74812 1692.02628 8086.7744	8 799. 141 12.0	343515 001864 		F(8, 141) Prob > F R-squared Adj R-squared Root MSE	= 0.0000 = 0.7908 = 0.7789
mpg	Coef.	Std. Err.	t		[95% Conf.	Interval]
cylinder displace horsepow accel year price wthp	2849999 .3059297 .3410433 .000649	.603188 .0168351 .0729368 .1895796 .2613443	0.10 0.93 -3.91 1.61 1.30 3.45	0.920 0.354 0.000 0.109 0.194 0.001	-1.131501 0176157 429191 0688561 1756165 .0002776 .0000325	1.253422 .048948 1408088 .6807156 .8577031 .0010203 .0001165
_cons	42.22624	22.06/6	1.91	0.058	-1.399893	85.85238

 $\frac{\partial MPG}{\partial wgt} = \beta_1 + \beta_8 \bullet hp \qquad \text{The marginal impact of a one pound change in a car's weight depends on the horsepower of the engine in the car.}$

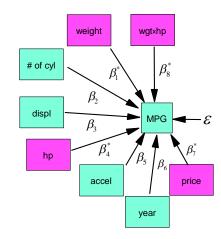
$$\frac{\partial MPG}{\partial wgt} = \beta_1 + \beta_8 \cdot hp = -0.0167 + 0.0000745 \times hp$$

Car Mileage: No Interaction Effect

Model	6247.30769	7 892.	472528		Prob > F	= 0.0000
Residual	1839.46671	142 12.9	539909		R-squared	= 0.7725
					Adj R-squared	
Total	8086.7744	149 54.2	736537		Root MSE	= 3.5992
				- 1.1		
mpg	Coef.	Std. Err.	t	P> t	[95% Conf.	Interval]
weight	0123731	.0018463	-6.70	0.000	0160229	0087234
cylinder	.4368451	.6167177	0.71	0.480	7822891	1.655979
displace	.0287842	.0170537	1.69	0.094	0049278	.0624962
horsepow	0554725	.0333758	-1.66	0.099	1214501	.0105051
accel	.431885	.193399	2.23	0.027	.0495716	.8141984
year	. 2809669	.2709474	1.04	0.302	2546449	.8165786
price	.0006226	.000195	3.19	0.002	.0002371	.0010081
_cons	27.85781	22.5288	1.24	0.218	-16.67736	72.39298

Car Mileage: With Interaction Effect

regress mpg weight cylinder displace horsepow accel year price wthp


Residual	1692.02628	141 12.0	001864		R-squared	= 0.7908
					Adj R-squared	
Total	8086.7744	149 54.2	736537		Root MSE	= 3.4641
mpg	Coef.	Std. Err.	t	P> t	[95% Conf.	Interval]
weight	0167031	.0021642	-7.72	0.000	0209816	0124246
cylinder	.0609603	.603188	0.10	0.920	-1.131501	1.253422
displace	.0156661	.0168351	0.93	0.354	0176157	.048948
horsepow	2849999	.0729368	-3.91	0.000	429191	1408088
accel	.3059297	.1895796	1.61	0.109	0688561	.6807156
year	.3410433	.2613443	1.30	0.194	1756165	.8577031
price	.000649	.0001878	3.45	0.001	.0002776	.0010203
wthp	.0000745	.0000212	3.51	0.001	.0000325	.0001165
_cons	42.22624	22.0676	1.91	0.058	-1.399893	85.85238

 $\frac{\partial MPG}{\partial wgt} = \beta_{\rm i} + \beta_{\rm g} \bullet hp \qquad \text{The marginal impact of a one pound change is a car's weight depends on the horsepower of the engine in the car.}$ $\frac{\partial MPG}{\partial wgt} = \beta_1 + \beta_8 \bullet hp = -0.0167 + 0.0000745 \times hp$ $\frac{\partial MPG}{\partial hp} = \beta_4 + \beta_8 \cdot wgt = -0.285 + 0.0000745 \times wgt$

> Handout on using metric variables in testing for interaction effects in multiple regression

$$\begin{split} \frac{\partial MPG}{\partial wgt} &= \beta_1 + \beta_8 \bullet hp = -0.0167 + 0.0000745 \times 60 = -0.012 \\ \frac{\partial MPG}{\partial wgt} &= \beta_1 + \beta_8 \bullet hp = -0.0167 + 0.0000745 \times 139 = -0.006 \\ \frac{\partial MPG}{\partial hp} &= \beta_4 + \beta_8 \bullet wgt = -0.285 + 0.0000745 \times wgt \\ \frac{\partial MPG}{\partial hp} &= \beta_4 + \beta_8 \bullet wgt = -0.285 + 0.0000745 \times 1,875 = -0.145 \\ \frac{\partial MPG}{\partial hp} &= \beta_4 + \beta_8 \bullet wgt = -0.285 + 0.0000745 \times 3,830 = 0.000335 \end{split}$$

	No Interaction	า	With Interac	ction
	Coef.	t	Coef.	t
weight	0123731	-6.70	0167031	-7.72
cylinder	.4368451	0.71	.0609603	0.10
displace	.0287842	1.69	.0156661	0.93
horsepow	0554725	-1.66	2849999	-3.91
accel	.431885	2.23	.3059297	1.61
year	.2809669	1.04	.3410433	1.30
price	.0006226	3.19	.000649	3.45
wt*hp			.0000745	3.51
_cons	27.85781	1.24	42.22624	1.91

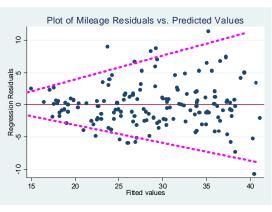
The Question:

When comparing the total variance explained by the "base model" containing only the four significant variables to the variance explained by the "expanded model" which adds the insignificant variables, is the addition to explained variation large enough to say that this extra set of variables together has significantly raised total explained variance?

$$H_0: \beta_2 = \beta_3 = \beta_5 = \beta_6 = 0$$

 H_a : at least one of these β not equal to zero

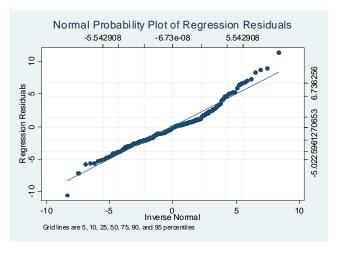
$$F_{n-K}^{H} = \frac{\left(RSS\{K-H\}-RSS\{K\}\right)/H}{\left(RSS\{K\}\right)/(n-K)} = \frac{\left(RSS_{restricted}-RSS_{unvestricted}\right)/H}{RSS_{unvestricted}/n-K}$$

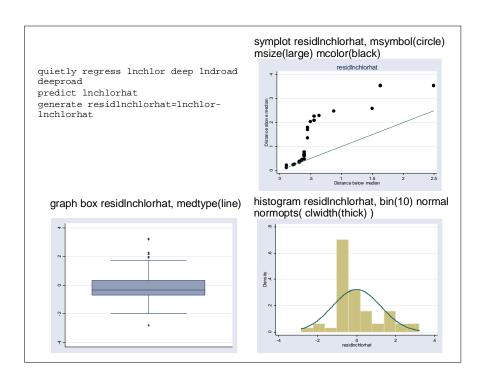

Residual Sum of Squares (RSS) is the sum of squared deviations of the residuals around their mean value of zero:

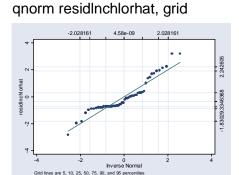
$$RSS\{K\} = \sum_{i=1}^{n} \varepsilon_{i}^{2} = \sum_{i=1}^{n} (Y_{i} - \hat{Y})^{2} = \sum_{i=1}^{n} (Y_{i} - [\hat{\beta}_{0} + \sum_{k=1}^{K-1} \hat{\beta}_{k} X_{ik}])^{2}$$

Remember, it's RSS that least squares regression seeks to minimize.

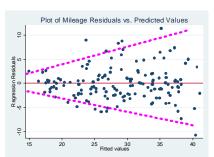
predict mpghat
generate resid = mpg -mpghat


graph twoway scatter resid mpghat, yline(0)
ti("Plot of Mileage Residuals vs. Predicted
Values")


```
quietly regress mpg weight cylinder displace horsepow accel year
price wthp
. test cylinder= displace= accel= year=0
(1) cylinder - displace = 0
( 2) cylinder - accel = 0
( 3) cylinder - year = 0
(4) cylinder = 0
      F( 4, 141) =
           Prob > F =
                        0.2049
 H_0: \beta_A = \beta_S = 0
 H_a: at least one of these \beta not equal to zero
 test horsepow= wthp=0
  (1) horsepow - wthp = 0
  (2) horsepow = 0
        F(2, 141) = 7.63
                          0.0007
```



qnorm resid, grid ti(Normal Probability Plot of Regression
Residuals)

Regression Residuals: Distribution Analysis histogram resid, bin(12) percent norm ti("Regression Residuals: Distribution Analysis") xlabel(-10 (2) 12) ylabel(0 (5) 30) ytick(1 (2) 29) Symmetry Plot for Regression Residuals symplot resid, ti(Symmetry Plot for Regression Residuals)


Nonnormality of the regression error term: • We lose the justification for applying the *t* and the *F* distributions, especially with small samples. • Since Ordinary Least Squares tends to be sensitive to outliers, heavy-tailed distributions can cause great sample-to-sample variation. I.e., our results from one random sample out of a population might not look very much like results from other samples. • Nomal Probability Pot of Regression Residuals • Symmetry Plot for Regression Residuals • Symmetry Plot for Regression Residuals • Symmetry Plot for Regression Residuals

Some possible solutions to the nonnormality of residuals:

- 1. Transform the dependent variable.
- 2. Transform one (or more) independent variables.

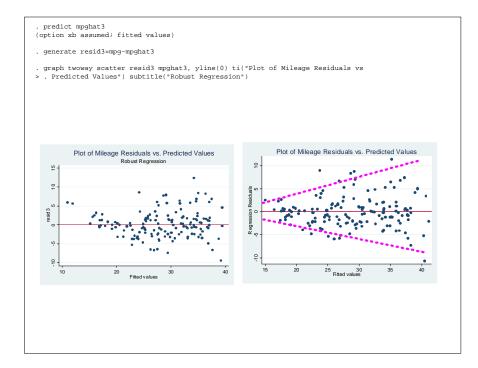
Possible transformations include: log transformations or power transformations.

Why is this a problem?

- Our initial assumption is that the variance of epsilon, conditional on the explanatory variables, is the same for all combinations is independent of the values of any of the independent variables. If this is not true, then the model exhibits heteroscedasticity.
- If heteroscedasticity is present, the coefficient estimates are unbiased, but the estimated standard errors of the estimated coefficients are biased.
- This means that hypothesis tests on regression coefficients (t-tests) and regressions (F-tests) will be incorrect, leading to incorrect inferences about our estimates.

$$\begin{split} E\left[\varepsilon_{i}\mid X\right] &= E\left[\varepsilon_{i}\right] = 0 \text{ for all } i \\ E\left[\varepsilon_{i}\varepsilon_{j}\right] &= \begin{cases} 0 & \text{for } i\neq j; \ i,j=1,2,...,n \\ \sigma_{\varepsilon}^{2} & \text{for } i=j; \ i,j=1,2,...,n \end{cases} \end{split}$$

Constant sigma implies homoscedasticity

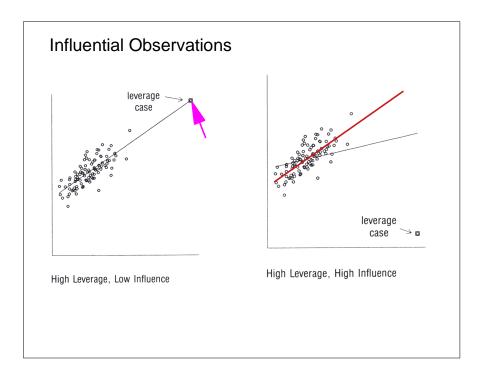

0 X_1 X_2 X_3 X_4

Changing sigmá implies heteroscedasticit

```
guietly regress mpg cylinder displace horsepow accel year weight price
Breusch-Pagan / Cook-Weisberg test for heteroskedasticity
       Ho: Constant variance
       Variables: fitted values of mpg
       Prob > chi2 = 0.0377
      . rreg mpg cylinder displace horsepow accel year weight price
         Huber iteration 1: maximum difference in weights = .65098398
         Huber iteration 2: maximum difference in weights = .11427817
         Huber iteration 3: maximum difference in weights = .04099405
      Biweight iteration 4: maximum difference in weights = .29345885
      Biweight iteration 5: maximum difference in weights = .03798754
      Biweight iteration 6: maximum difference in weights = .00815723
      Robust regression
                                                     F( 7,
                                                                 142) =
                                                                              69.74
                                                     Prob > F
                                                                             0.0000
                         Coef. Std. Err.
                                               t P> t
                                                               [95% Conf. Interval]
         cylinder
                      .1562774
                                  .6051004
                                              0.26
                                                     0.797
                                                              -1.039892
                                                                           1.352447
          displace
                         .03902
                                  .0167325
                                              2.33
                                                     0.021
                                                                .005943
                                                                            .0720969
                                                                            .0057036
          horsepow
                     -.0590311
                                  .0327471
                                             -1.80
                                                     0.074
                                                              -.1237659
            accel
                      .3803014
                                  .1897559
                                              2.00
                                                     0.047
                                                               .0051897
                                                                            755413
             year
                      3283337
                                  2658435
                                              1.24
                                                     0 219
                                                              - 1971886
                                                                            853856
            weight
                     - 0126884
                                  0018115
                                             -7 00
                                                     0 000
                                                              -.0162694
                                                                          - 0091074
                                  .0001913
                                                                .000261
            price
                      .0006392
                                              3.34
                                                     0.001
                                                                            .0010175
             cons
                      25.55935
                                22.10442
                                              1.16
                                                     0.249
                                                               -18.1369
                                                                            69.2556
```

Are there ways to deal with heteroscedasticity?

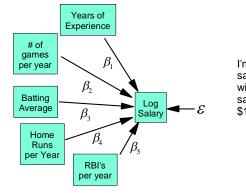
- Stata can provide "heteroscedasticity robust" statistics after OLS estimation (see Hamilton "Robust Regression"), or
- We can uses Stata's "weighted least squares" to produce asymptotically unbiased estimates of standard errors. (See Hamilton)

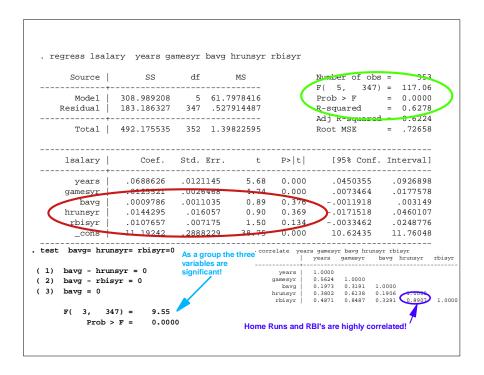

mpg	Coef.	Std. Err.	t	P> t	
cylinder	.1562774	.6051004	0.26	0.797	Displacement is now Signification
displace	.03902	.0167325	2.33	0.021	
horsepow	0590311	.0327471	-1.80	0.074	
accel	.3803014	.1897559	2.00	0.047	
year	.3283337	.2658435	1.24	0.219	
weight	0126884	.0018115	-7.00	0.000	
price	.0006392	.0001913	3.34	0.001	
_cons DLS Regression mpg		22.10442			
DLS Regression	Coef.	Std. Err.	t	P> t	
DLS Regression mpg cylinder	Coef. .4368451	Std. Err. .6167177	t 	P> t 	
DLS Regression mpg cylinder displace	Coef. .4368451 .0287842	Std. Err. .6167177 .0170537	t 0.71 1.69	P> t 0.480 0.094	
DLS Regression mpg cylinder displace horsepow	Coef. .4368451 .0287842 0554725	Std. Err. .6167177 .0170537 .0333758	t 0.71 1.69 -1.66	P> t 0.488 0.094 0.099	
mpg cylinder displace horsepow accel	Coef. .4368451 .0287842 0554725 .431885	Std. Err. .6167177 .0170537 .0333758 .193399	t 0.71 1.69 -1.66 2.23	P> t 0.480 0.094 0.099 0.027	
mpg cylinder displace horsepow accel year	Coef. .4368451 .0287842 0554725 .431885 .2809669	Std. Err. .6167177 .0170537 .0333758 .193399 .2709474	0.71 1.69 -1.66 2.23 1.04	P> t 0.490 0.094 0.099 0.027 0.302	
mpg cylinder displace horsepow accel year weight	Coef. .4368451 .0287842 0554725 .431885 .2809669 0123731	Std. Err. .6167177 .0170537 .0333758 .193399 .2709474 .0018463	0.71 1.69 -1.66 2.23 1.04 -6.70	P> t 0.460 0.094 0.099 0.027 0.302 0.000	
mpg cylinder displace horsepow accel year	Coef. .4368451 .0287842 0554725 .431885 .2809669	Std. Err. .6167177 .0170537 .0333758 .193399 .2709474	0.71 1.69 -1.66 2.23 1.04 -6.70	P> t 0.480 0.094 0.099 0.027 0.302 0.000 0.002	

Omitted Variable Bias -- Specification Error

The solution: Include all relevant explanatory variables. For this you need a strong theory of the causal process that you are trying to explain, or, lacking the appropriate variables, you need to run a well-controlled experiment.

Functional Form -- Misspecification

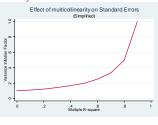



Career Statistics for 353 Major League Baseball Players: 1993 Season

Goal: Predict determinants of their 1993 Salaries

The Model:

I'm using the logarithm of salary because of the wide variation in player salaries (Range: \$109,000 to \$6,329,213)



$$\operatorname{var}(\hat{\beta}_{j}) = \frac{s^{2}}{(n-1)\operatorname{var}(X_{j})} \cdot \frac{1}{1-R_{j}^{2}}$$
 where

- s^2 is the variance of the error term in the regression.
- var(X_i) is the variance of the independent variable *j*.
- R_i^2 is the multiple R^2 for the regression of X_i on the other covariates

$$\frac{1}{1-R_j^2}$$
 is the Variance Inflation Factor (VIF)

As R_i^2 rises from 0 to one, the VIF approaches infinity.

Multicollinearity refers to a situation in which there is a strong linear relationship among two or more independent variables in a multiple regression. In the more extreme cases, this linear correlation is so strong that the contribution of individual variables to the regression cannot be adequately ascertained.

regress rbisyr hrunsyr gamesyr years bavg

Source	SS	df	MS	Number of obs = 353
+				F(4, 348) = 1469.33
Model	173190.97	4	43297.7426	$P_{POD} > F = 0.0000$
Residual	10254.7377	348	29.467637	k-squared = 0.9441
+				Adj P -squared = 0.9435
Total	183445.708	352	521.15258	Root MSE = 5.4284

rbisyr	Coef.	Std. Err.	t	P> t	[95% Conf.	Interval]
+						
hrunsyr	1.998371	.0540007	37.01	0.000	1.892162	2.10458
gamesyr	.2979218	.0116611	25.55	0.000	.2749867	.3208569
years	1049775	.0903352	-1.16	0.246	2826491	.0726941
bavg	.0408626	.0079482	5.14	0.000	.02523	.0564953
cons	-15.9307	1.981683	-8.04	0.000	-19.82828	-12.03312

The Variance Inflation Factor (VIF) for RBI's per year is: $\frac{1}{1-R_i^2} = \frac{1}{1-0.9441} = 17.889$

and:
$$\operatorname{var}(\hat{\beta}_j) = \frac{s^2}{(n-1)\operatorname{var}(X_j)} \cdot \frac{1}{1-R_j^2} = 0.000051 = Z \cdot 17.889$$

This, in effect, means that RBI's per year and home runs per year are measuring much the same thing and Stata can't allocate explanatory power between them.

Dealing with Multicollinearity

 Use Stata's post estimation command <u>estat vif</u> to see if any coefficients show signs of trouble. E.g., for our baseball salary model we have:

Detection Rules of Thumb:

- 1. VIF for any variable is Greater Than or Equal to 10
- 2. Mean VIF for the entire regression is significantly greater than 1
- Experiment with adding and deleting the suspect variables. Do standard errors or coefficient estimates change substantially?
- Employ one of the following coping strategies:
- ✓ Keep the variables in the equation, but understand that we cannot generalize (beyond the sample) about their separate effects.
- ✓ Drop one or more of the offending variables, since their information is mostly redundant.
- ✓ Combine the variables, since there is evidence that they are measuring the same thing.
- ✓ Collect more data. Multicollinearity is basically a problem of not enough information. Adding cases generally makes the coefficient estimates more precise, by (1) increasing n in the denominator of the formula, and (2) by increasing the variance of the independent variables.

$$\operatorname{var}(\hat{\beta}_{j}) = \frac{s^{2}}{(n-1)\operatorname{var}(X_{j})} \cdot \frac{1}{1 - R_{j}^{2}}$$

Larger *n* increases denominator

 \sim var(X_i) is likely to rise also

	quietl	У	regres	ss	lsal	ary	rbisyr
hr	unsyr	ga	mesyr	ye	ars	bavg	

. estat vif

Variable	VIF	1/VIF
rbisyr	17.89	0.055901
hrunsyr	7.94	0.125913
gamesyr	6.10	0.163982
years	1.47	0.678753
bavg	1.20	0.834258
Mean VIF	6.92	,