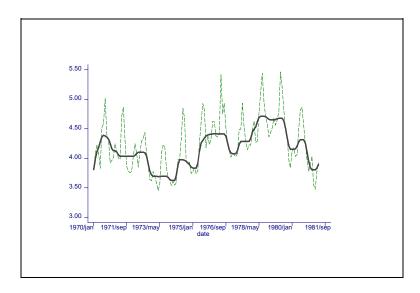

Examination Number:								
Cion the Honor Plades Deleve	Las	t Name	First	_				
Sign the Honor Pledge Below_	F1D Wri	PID # Write Your Section Number here:						
U	niversity of Nort		Trumour nore.	-				
	mics 400: Econ		tics					
P	ractice Final Ex	amination						
Prof. B. Turchi			Spring 20	19				
answers on the exam paper itsel Honor Pledge above. Be sure t exam. The Equations on the a	o note that tables and	d formulas are	on the last page of the					
1. (8 points) Prove that the san unbiased estimator of the po		•	andom sample of size n is	an				
2. (8 points) Based on its expethat, seven days after the on of homes will still be without	set of a power outage	such as we are r	now experiencing, only 59	%				


3. (12 points)The following graphs describe average daily water use (measured monthly) in Concord, Mass. between January, 1970 and May, 1981.

- (a) Write the command that will produce the Stata 15 version of the graph on your left:
- (b) Write the command that will produce the Stata 15 version of the graph on your right:
- (c) What is the median value of average daily water use?
- (d) Does the boxplot suggest that the distribution of data is symmetrical or skewed? Be detailed and justify your answer.
- (e) What does the right-hand graph suggest about the shape of the distribution of these data?
- (f) Do the two graphs agree or disagree about the shape of the data? Why/Why not?
- 4. (9 points) The graph below shows the time series of average daily water use in Concord, Mass. Based on your understanding of the components of time series, which of the following components does this series exhibit? seasonal, trend, irregular, cyclical. Explain your answer.

5. (10 points) (a) Looking at the graph of average daily water use in Concord, Mass. below, what does the solid line represent and what kind of Stata command might have been used to produce it? (b) What components of the time series does the solid line represent?

6.	(6 points)	The following Sta	ıta output shows	the regression	model:
•	(° P • 1111)		out out place the		

 $AvgWaterUse = \alpha + \beta \cdot AvgRainFall + \varepsilon$. Answer the following questions using these results as a basis for your answers.

Source	SS	df	MS		Number of obs	
'	.296179057 25.3931185				F(1, 135) Prob > F R-squared	= 0.2117 = 0.0115
Total	25.6892976	136	.188891894		Adj R-squared Root MSE	
h2ouse	Coef.	Std. E	rr. t	P> t	[95% Conf.	Interval]
	0319033 4.331621				0821848 4.162564	.0183782 4.500679

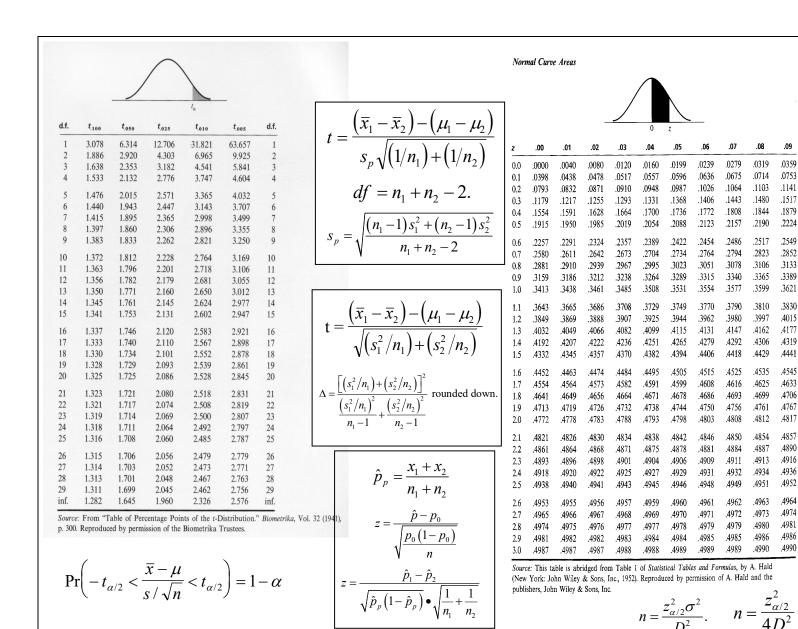
(a) Draw a causal diagram and explain what this regression is attempting to discover.

- (b) What proportion of the total variation in water use does rainfall explain?
- (c) Does rainfall have a significant impact on the level of water use? Why/Why Not?

7. (6 points) Here's another regression relating average daily water use to average daily temperature.

	Number of obs F(1, 135)		MS		df	SS 	
= 0.0000 $= 0.2805$	Prob > F R-squared Adj R-squared				1	7.20645737 18.4828402	Model
	Root MSE		891894	.1888	136	25.6892976	Total
Interval]	[95% Conf.	P> t	t	Err.	Std.		h2ouse
.0160338	.0091648	0.000	7.26 44.13		.0017	.0125993	temp cons

- (a) Draw a causal diagram and write the equation that represents this equation.
- (b) What proportion of the total variation in average daily water use does this regression represent?
- (c) Does daily temperature have a significant impact on water use? Why?/Why not?
- 8. (15 points) In 1997 the US Department of Agriculture reported that the average American consumed 28.0 lbs. of cheese. Last year, a randomly selected group of 35 Americans consumed the following amounts of cheese:


```
34
                          28
    23
        27
             32
                 36
27
        30
             22
                 41
                     20
                          36
    26
        39
                     22
                          27
  26
            18
                 33
                     25
   27
        20
             31
                 21
                          30
                     30
                          23
    31
        30
            16
                 38
```

At the 5% significance level do the data provide sufficient evidence to conclude that last year's mean cheese consumption for Americans is different from the 1997 mean? Show your work and explain your procedure and the assumption(s) you make to find your answer.

9. (15 points) The UNC Career Services Center conducts surveys on the starting salaries of college graduates from UNC. The following table gives the starting annual salaries obtained from independent random samples of 35 liberal arts and 32 accounting graduates:

	Li	beral a	arts	Accounting					
33.0	29.8	34.3	33.6	34.0	35.9	31.4	34.3	31.9	
31.7	36.8	31.3	30.7	31.0	34.4	36.3	37.8	33.6	
32.1	34.1	32.6	32.0	31.7	35.0	33.0	32.7	34.0	
33.8	33.4	30.1	32.5		37.2	36.9	35.8	36.3	
32.9	32.2	32.1	30.2		36.5	31.4	33.4	35.5	
31.3	35.7	33.0	32.2		35.9	36.4	36.8	35.2	
33.9	32.1	33.8	33.5		33.2	33.1	32.0	35.7	
34.4	29.3	29.3	33.5		32.5	33.5	36.4	37.6	

At the 5% significance level, can you conclude that the mean starting salaries of liberal arts and accounting graduates differ? State your assumptions and show your work.
10. (5 points) In a least squares regression, what relationship do the mean of the dependent variable and the mean of the independent variable have with the estimated regression line?
11. (6 points) What is/are the sufficient statistics of (a) the normal distribution, (b) the exponential distribution and (c) the uniform distribution?
Equation Sheet follows: Remember, the actual equation sheets will be identical to Midterm 2

Binomial Coefficients

n	$\binom{n}{0}$	$\binom{n}{1}$	$\binom{n}{2}$	$\binom{n}{3}$	$\binom{n}{4}$	$\binom{n}{5}$	$\binom{n}{6}$	$\binom{n}{7}$	(n 8)	(n/9)	$\binom{n}{10}$
0	1										
1	1	1									-
2	1	2	1								
3	1	3	3	1							
4	1	4	6	4	1						
5	1	5	10	10	5	1					
0	1	6	15	20	15	6	1				
7	1	7	21	35	35	21	7	1			
8	1	8	28	56	70	56	28	8	1		
9	1	9	36	84	126	126	84	36	9	1	
-		-						-		•	
10	1	10	45	120	210	252	210	120	45	10	1
11	1	11	55	165	330	462	462	330	165	55	11
12	1	12	66	220	405	792	924	792	495	220	66
13	1	13	78	286	715	1287	1716	1716	1287	715	286
14	1	14	91	364	1001	2002	3003	3432	3003	2002	1001
45		45	105	455	1005	0000	5005	0405	0405	5005	
15 16	1	15 16	120	455 560	1365 1820	3003	5005	6435	6435	5005	3003
17	1	17	136	680	2380	4368 6188	8008 12376	11440 19448	12870	11440	8008
18	1	18	153	816	3060	8568	18564		24310	24310	19448
19	1	19	171	969	3876	11628	27132	31824	43758	48620	43758
13	'	19	171	303	3070	11020	21102	50388	75582	92378	92378
20	1	20	190	1140	4845	15304	38760	77520	125970	167960	184756

If necessary, use the identity $\binom{n}{k} = \binom{n}{n-k}$.

$$f(\widetilde{x}) = \frac{1}{\sigma\sqrt{2\pi}}e^{-(x-\mu)^2/2\sigma^2} - \infty < x < \infty$$

$$\sigma^{2} = \frac{\sum_{i=1}^{N} (x_{i} - \mu)^{2}}{N}$$

$$p(x) = \frac{C_{x}^{r} C_{n-x}^{N-r}}{C_{n}^{N}} = \frac{\binom{r}{x} \binom{N-r}{n-x}}{\binom{N}{n}}$$

$$\text{Mean: } \mu = n \left(\frac{r}{N}\right)$$

$$\text{Variance: } \sigma^{2} = n \left(\frac{r}{N}\right) \left(\frac{N-r}{N}\right) \left(\frac{N-r}{N-1}\right)$$

$$\text{Standard deviation: } \sigma = \sqrt{\sigma^{2}}$$

$$f(x) = \begin{cases} \frac{1}{(b-a)}, & a \le x \le b \\ 0, & \text{otherwise} \end{cases}$$

$$\mu = \frac{1}{2}(b+a) \text{ and } \sigma = \frac{(b-a)}{\sqrt{12}}$$

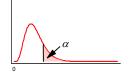
$$f(x) = \begin{cases} \lambda e^{-\lambda x}, & \lambda > 0, x \ge 0 \\ 0, & \text{otherwise} \end{cases}$$

$$\mu = \frac{1}{\lambda} \text{ and } \sigma = \frac{1}{\lambda}$$

$$P(x \ge a) = e^{-\lambda a}, a \ge 0 \text{ and } \lambda > 0$$

$$P(A_{i}|B) = \frac{P(B|A_{i})P(A_{i})}{\sum_{\text{all }k} P(B|A_{k})P(A_{k})} \qquad F_{(n_{A}-1;n_{B}-1)} = \frac{s_{A}^{2}/\sigma_{A}^{2}}{s_{B}^{2}/\sigma_{B}^{2}}$$

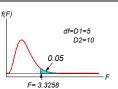
$$\chi_{(n-1)}^{2} = \frac{n-1}{\sigma_{0}^{2}} s^{2}$$


$$P(x) = \begin{cases} \frac{e^{-\lambda t} (\lambda t)^{x}}{x!}, & \text{for } x = 0, 1, 2, , \infty, \quad \lambda > 0, \\ 0, & \text{otherwise.} \end{cases}$$

 λ = the mean number of events in a given segment of time (t = 1)

t =the length of a particular subsegment $(t \le 1)$

 $E[x] = \mu_x = \lambda t$ = the expected number of events in one subsegment length t


Critical values of χ^2_{α}

df	$\chi^{2}_{0.995}$	$\chi^{2}_{0.99}$	$\chi^{2}_{0.975}$	$\chi^{2}_{0.95}$	$\chi^2_{0.90}$		
<u>aj</u>							
1	0.000	0.000	0.001	0.004	0.016		
2	0.010	0.020	0.051	0.103	0.211		
3	0.072	0.115	0.216	0.352	0.584		
4	0.207	0.297	0.484	0.711	1.064		
5	0.412	0.554	0.831	1.145	1.610		
6	0.676	0.872	1.237	1.635	2.204		
7	0.989	1.239	1.690	2.167	2.833		
8	1.344	1.646	2.180	2.733	3.490		
9	1.735	2.088	2.700	3.325	4.168		
10	2.156	2.558	3.247	3.940	4.865		
11	2.603	3.053	3.816	4.575	5.578		
12	3.074	3.571	4.404	5.226	6.304		
13	3.565	4.107	5.009	5.892	7.042		
14	4.075	4.660	5.629	6.571	7.790		
15	4.601	5.229	6.262	7.261	8.547		
16	5.142	5.812	6.908	7.962	9.312		
17	5.697	6.408	7.564	8.672	10.085		
18	6.265	7.015	8.231	9.390	10.865		
19	6.844	7.633	8.907	10.117	11.651		
20	7.434	8.260	9.591	10.851	12.443		
21	8.034	8.897	10.283	11.591	13.240		
22	8.643	9.542	10.982	12.338	14.041		
23	9.260	10.196	11.689	13.091	14.848		
24	9.886	10.856	12.401	13.848	15.659		
25	10.520	11.524	13.120	14.611	16.473		
26	11.160	12.198	13.844	15.379	17.292		
27	11.808	12.879	14.573	16.151	18.114		
28	12.461	13.565	15.308	16.928	18.939		
29	13.121	14.256	16.047	17.708	19.768		
30	13.787	14.953	16.791	18.493	20.599		
40	20.707	22.164	24.433	26.509	29.051		
50	27.991	29.707	32.357	34.764	37.689		
60	35.534	37.485	40.482	43.188	46.459		
70	43.275	45.442	48.758	51.739	55.329		
80	51.172	53.540	57.153	60.391	64.278		
90	59.196	61.754	65.647	69.126	73.291		
100	67.328	70.065	74.222	77.930	82.358		

$\chi^2_{0.10}$	$\chi^2_{0.05}$	$\chi^{2}_{0.025}$	$\chi^{2}_{0.001}$	$\chi^{2}_{0.005}$	df		
2.706	3.841	5.024	6.635	7.879	1		
4.605	5.991	7.378	9.210	10.597	2		
6.251	7.815	9.348	11.345	12.838	3		
7.779	9.488	11.143	13.277	14.860	4		
9.236	11.070	12.833	15.086	16.750	5		
10.645	12.592	14.449	16.812	18.548	6		
12.017	14.067	16.013	18.475	20.278	7		
13.362	15.507	17.535	20.090	21.955	8		
14.684	16.919	19.023	21.666	23.589	9		
15.987	18.307	20.483	23.209	25.188	10		
17.275	19.675	21.920	24.725	26.757	11		
18.549	21.026	23.337	26.217	28.300	12		
19.812	22.362	24.736	27.688	29.819	13		
21.064	23.685	26.119	29.141	31.319	14		
22.307	24.996	27.488	30.578	32.801	15		
23.542	26.296	28.845	32.000	34.267	16		
24.769	27.587	30.191	33.409	35.718	17		
25.989	28.869	31.526	34.805	37.156	18		
27.204	30.143	32.852	36.191	38.582	19		
28.412	31.410	34.170	37.566	39.997	20		
29.615	32.671	35.479	38.932	41.401	21		
30.813	33.924	36.781	40.290	42.796	22		
32.007	35.172	38.076	41.638	44.181	23		
33.196	36.415	39.364	42.980	45.559	24		
34.382	37.653	40.647	44.314	46.928	25		
35.563	38.885	41.923	45.642	48.290	26		
36.741	40.113	43.195	46.963	49.645	27		
37.916	41.337	44.461	48.278	50.994	28		
39.087	42.557	45.722	49.588	52.336	29		
40.256	43.773	46.979	50.892	53.672	30		
51.805	55.759	59.342	63.691	66.767	40		
63.167	67.505	71.420	76.154	79.490	50		
74.397	79.082	83.298	88.381	91.955	60		
85.527	90.531	95.023	100.424	104.213	70		
96.578	101.879	106.628	112.328	116.320	80		
107.565	113.145	118.135	124.115	128.296	90		
118.499	124.343	129.563	135.811	140.177	100		

F-Distribution Table: Upper 5% Probability (or 5% Area) under F-distribution Curve

			F-Table for	alpha = 0.	05		F=	3.3258											
/	df1=1	2	3	4	5	6	7	8	9	10	12	15	20	24	30	40	60	120	inf
df2=1	161.4476	199.5	215.7073	224.5832	230.1619	233.986	236.7684	238.8827	240.5433	241.8817	243.906	245.9499	248.0131	249.0518	250.0951	251.1432	252.1957	253.2529	254.3144
2	18.5128	19	19.1643	19.2468	19.2964	19.3295	19.3532	19.371	19.3848	19.3959	19.4125	19.4291	19.4458	19.4541	19.4624	19.4707	19.4791	19.4874	19.4957
3	10.128	9.5521	9.2766	9.1172	9.0135	8.9406	8.8867	8.8452	8.8123	8.7855	8.7446	8.7029	8.6602	8.6385	8.6166	8.5944	8.572	8.5494	8.5264
4	7.7086	6.9443	6.5914	6.3882	6.2561	6.1631	6.0942	6.041	5.9988	5.9644	5.9117	5.8578	5.8025	5.7744	5.7459	5.717	5.6877	5.6581	5.6281
5	6.6079	5.7861	5.4095	5.1922	5.0503	4.9503	4.8759	4.8183	4.7725	4.7351	4.6777	4.6188	4.5581	4.5272	4.4957	4.4638	4.4314	4.3985	4.365
6	5.9874	5.1433	4.7571	4.5337	4.3874	4.2839	4.2067	4.1468	4.099	4.06	3.9999	3.9381	3.8742	3.8415	3.8082	3.7743	3.7398	3.7047	3.6689
7	5.5914	4.7374	4.3468	4.1203	3.9715	3.866	3.787	3.7257	3.6767	3.6365	3.5747	3.5107	3.4445	3.4105	3.3758	3.3404	3.3043	3.2674	3.2298
8	5.3177	4.459	4.0662	3.8379	3.6875	3.5806	3.5005	3.4381	3.3881	3.3472	3.2839	3.2184	3.1503	3.1152	3.0794	3.0428	3.0053	2.9669	2.9276
9	5.1174	4.2565	3.8625	3.6331	3.4817	3.3738	3.2927	3.2296	3.1789	3.1373	3.0729	3.0061	2.9365	2.9005	2.8637	2.8259	2.7872	2.7475	2.7067
10	4.9646	4.1028	3.7083	3.478	3.3258	3.2172	3.1355	3.0717	3.0204	2.9782	2.913	2.845	2.774	2.7372	2.6996	2.6609	2.6211	2.5801	2.5379
11	4.8443	3.9823	3.5874	3.3567	3.2039	3.0946	3.0123	2.948	2.8962	2.8536	2.7876	2.7186	2.6464	2.609	2.5705	2.5309	2.4901	2.448	2.4045
12	4.7472	3.8853	3.4903	3.2592	3.1059	2.9961	2.9134	2.8486	2.7964	2.7534	2.6866	2.6169	2.5436	2.5055	2.4663	2.4259	2.3842	2.341	2.2962
13	4.6672	3.8056	3.4105	3.1791	3.0254	2.9153	2.8321	2.7669	2.7144	2.671	2.6037	2.5331	2.4589	2.4202	2.3803	2.3392	2.2966	2.2524	2.2064
14	4.6001	3.7389	3.3439	3.1122	2.9582	2.8477	2.7642	2.6987	2.6458	2.6022	2.5342	2.463	2.3879	2.3487	2.3082	2.2664	2.2229	2.1778	2.1307
15	4.5431	3.6823	3.2874	3.0556	2.9013	2.7905	2.7066	2.6408	2.5876	2.5437	2.4753	2.4034	2.3275	2.2878	2.2468	2.2043	2.1601	2.1141	2.0658
16	4.494	3.6337	3.2389	3.0069	2.8524	2.7413	2.6572	2.5911	2.5377	2.4935	2.4247	2.3522	2.2756	2.2354	2.1938	2.1507	2.1058	2.0589	2.0096
17	4.4513	3.5915	3.1968	2.9647	2.81	2.6987	2.6143	2.548	2.4943	2.4499	2.3807	2.3077	2.2304	2.1898	2.1477	2.104	2.0584	2.0107	1.9604
18	4.4139	3.5546	3.1599	2.9277	2.7729	2.6613	2.5767	2.5102	2.4563	2.4117	2.3421	2.2686	2.1906	2.1497	2.1071	2.0629	2.0166	1.9681	1.9168
19	4.3807	3.5219	3.1274	2.8951	2.7401	2.6283	2.5435	2.4768	2.4227	2.3779	2.308	2.2341	2.1555	2.1141	2.0712	2.0264	1.9795	1.9302	1.878
20	4.3512	3.4928	3.0984	2.8661	2.7109	2.599	2.514	2.4471	2.3928	2.3479	2.2776	2.2033	2.1242	2.0825	2.0391	1.9938	1.9464	1.8963	1.8432
21	4.3248	3.4668	3.0725	2.8401	2.6848	2.5727	2.4876	2.4205	2.366	2.321	2.2504	2.1757	2.096	2.054	2.0102	1.9645	1.9165	1.8657	1.8117
22	4.3009	3.4434	3.0491	2.8167	2.6613	2.5491	2.4638	2.3965	2.3419	2.2967	2.2258	2.1508	2.0707	2.0283	1.9842	1.938	1.8894	1.838	1.7831
23	4.2793	3.4221	3.028	2.7955	2.64	2.5277	2.4422	2.3748	2.3201	2.2747	2.2036	2.1282	2.0476	2.005	1.9605	1.9139	1.8648	1.8128	1.757
24	4.2597	3.4028	3.0088	2.7763	2.6207	2.5082	2.4226	2.3551	2.3002	2.2547	2.1834	2.1077	2.0267	1.9838	1.939	1.892	1.8424	1.7896	1.733
25	4.2417	3.3852	2.9912	2.7587	2.603	2.4904	2.4047	2.3371	2.2821	2.2365	2.1649	2.0889	2.0075	1.9643	1.9192	1.8718	1.8217	1.7684	1.711
26	4.2252	3.369	2.9752	2.7426	2.5868	2.4741	2.3883	2.3205	2.2655	2.2197	2.1479	2.0716	1.9898	1.9464	1.901	1.8533	1.8027	1.7488	1.6906
27	4.21	3.3541	2.9604	2.7278	2.5719	2.4591	2.3732	2.3053	2.2501	2.2043	2.1323	2.0558	1.9736	1.9299	1.8842	1.8361	1.7851	1.7306	1.6717
28	4.196	3.3404	2.9467	2.7141	2.5581	2.4453	2.3593	2.2913	2.236	2.19	2.1179	2.0411	1.9586	1.9147	1.8687	1.8203	1.7689	1.7138	1.6541
29	4.183	3.3277	2.934	2.7014	2.5454	2.4324	2.3463	2.2783	2.2229	2.1768	2.1045	2.0275	1.9446	1.9005	1.8543	1.8055	1.7537	1.6981	1.6376
30	4.1709	3.3158	2.9223	2.6896	2.5336	2.4205	2.3343	2.2662	2.2107	2.1646	2.0921	2.0148	1.9317	1.8874	1.8409	1.7918	1.7396	1.6835	1.6223
40	4.0847	3.2317	2.8387	2.606	2.4495	2.3359	2.249	2.1802	2.124	2.0772	2.0035	1.9245	1.8389	1.7929	1.7444	1.6928	1.6373	1.5766	1.5089
60	4.0012	3.1504	2.7581	2.5252	2.3683	2.2541	2.1665	2.097	2.0401	1.9926	1.9174	1.8364	1.748	1.7001	1.6491	1.5943	1.5343	1.4673	1.3893
120	3.9201	3.0718	2.6802	2.4472	2.2899	2.175	2.0868	2.0164	1.9588	1.9105	1.8337	1.7505	1.6587	1.6084	1.5543	1.4952	1.429	1.3519	1.2539
inf	3.8415	2.9957	2.6049	2.3719	2.2141	2.0986	2.0096	1.9384	1.8799	1.8307	1.7522	1.6664	1.5705	1.5173	1.4591	1.394	1.318	1.2214	1

Answers to Final Exam

1.

$$E[\hat{p}] = u_{\hat{p}} = E\left[\frac{x}{n}\right] = \frac{1}{n}E[x] = \frac{1}{n} \times (np) = p$$

Where x is the number of successes in n trials and is distributed binomally. (np) is the mean of the binomial distribution.

2. This problem requires the use of the exponential distribution, in particular the formula showing *right tail probabilities:*

$$P(x \ge a) = e^{-\lambda a} \Rightarrow P(x \ge 7) = 0.05 = e^{-\lambda 7}$$

$$\ln(0.05) = -\lambda \times 7 \Rightarrow -\left(\frac{\ln(0.05)}{7}\right) = \lambda = 0.428$$

$$\mu = \frac{1}{\lambda} = \frac{1}{0.428} = 2.337 \text{ days.}$$

We use the formula for right-tail probabilities to solve for λ , the reciprocal of which is equal to the mean of the distribution.

- 3. (a) graph box *varname*, ylabel(3.4 3.6 to 5.6) (Stata 13)
 - (b) qnorm varname
 - (c) 4.2 units
 - (d) The boxplot suggests that the data, while reasonably symmetrical in the middle is slightly skewed right, given the longer whisker at the upper end and the 3 outliers.

- (e) The quorm plot suggests also that while the data track the normal distribution well in the center, that the tails are thicker than they would be with the normal. The skew appears to be to the right.
- (f) The two graphs basically agree because both show a symmetrical center but a longer upper tail .
- 4. These data show seasonal, irregular and cyclical components. There does not appear to be much of a trend component, but the student might say something like "trend-cycle" which would be OK.
- 5. (a) The solid line is clearly the result of some sort of smoothing procedure: perhaps a *moving* average, or the *smooth* command.
 - (b) The solid line represents the cyclical component ... there does not appear to be much of a trend, so if the student says cyclical *and* trend, then take off one point.
- 6. (a) The causal diagram would look like:

This regression is attempting to determine if there is a causal relationship between average rainfall and water use by households.

- (b) The $R^2 = 0.0115$, which says that only about 1.1% of the variation in water use is accounted for by the regression.
- (c) No, rainfall appears not to have a significant effect on water use. The coefficient on "rain" is small (-0.0319033) and it has a small t-statistic, which allows us to reject the null hypothesis at only the 21.2% level.
- 7. (a) The causal diagram would look like:

And the equation representing this relationship would be:

$$H2OUse = \alpha + \beta \bullet temp + \varepsilon$$

(b) This regression explains 28.05% of the total variation in water use $(R^2 = 0.2805)$

- (c) Yes, temperature has a significant positive effect on water use. The estimated beta coefficient is 0.0125993 with a t-statistic of 7.26, which allows us to reject the null hypothesis at less than the 0.000 level.
- 8. The student needs to compute the sample mean, and the sample standard deviation:

$$\overline{x} = \frac{\sum_{i=1}^{35} weight_i}{n = 35}$$

$$S = \sqrt{\frac{\sum_{i=1}^{n} (weight_i - \overline{x})^2}{n - 1}}$$

Then he/she needs to compute the t-statistic:

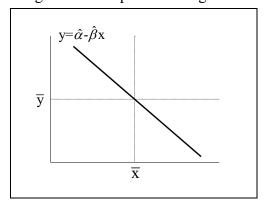
$$t = \frac{\overline{x} - 28.0}{\frac{6.479833}{\sqrt{35}}} = \frac{28.8 - 28.0}{\frac{6.479833}{\sqrt{35}}} = 0.7304$$

Then, using the t-table (or the normal table since the df > 30) we see that one cannot reject the null hypothesis that Americans are consuming the same amount of cheese as before.

Remember, the student should have assumed that the underlying population was normally distributed in order to perform this t-test.

9. Here, the student needs to calculate means and standard errors for both populations (or the pooled standard error if assuming equal population variances):

$$\overline{x}_{la} = 32.51143$$
 $\overline{x}_{ac} = 34.7375$
 $s_p = 0.4417233$ and $df = 65$
 $s_{la} = 0.2895889$
 $s_{ac} = 0.3363331$ and $df = 62.6214$ rounded down


Then, using the formulas for pooled variance two-sample t-statistic or unequal variance t-statistic (see the formulas for both versions on the formula sheet at the back of the test) the student needs to calculate the t-statistic. The student can use either the pooled or the unequal variance version; however, he must do so consistently and correctly.

t = -5.0395 (for pooled test) t = -5.0156 (for unequal variance version)

In either case, we can easily reject the null hypothesis. Note also, that the student could use the normal distribution, since the df > 30.

In either case, the student should assume that both underlying populations are normally distributed, which they appear to be.

10. The regression line passes through the means of both the x- and y-variables.

- 11. a) Normal Distribution: mean and standard deviation
 - b) Exponential Distribution: λ .
 - c) Uniform Distribution: a & b. (i.e., the two endpoints of the distribution.